

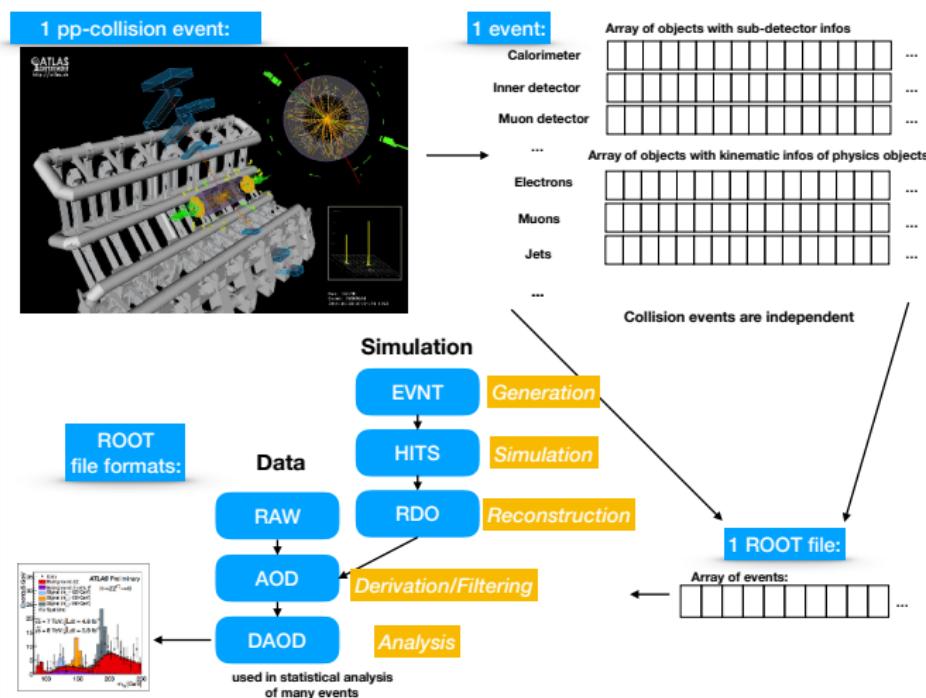
THE ATLAS ANALYSIS MODEL STUDY GROUP FOR RUN-3

Johannes Elmsheuser and several more ATLAS members
24 July 2019, BNL NPPS meeting

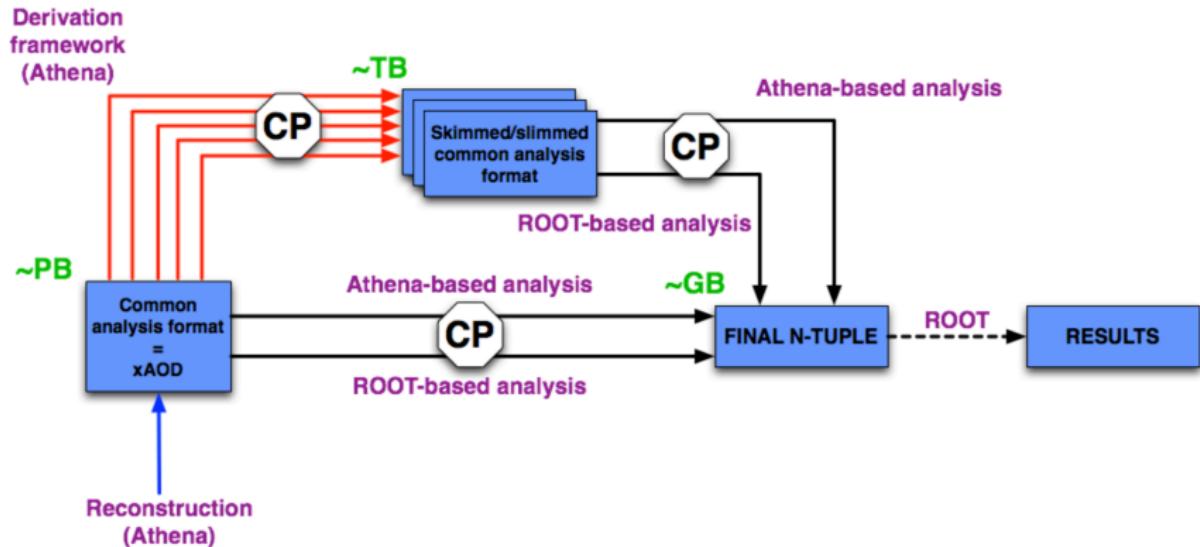
OUTLINE

Introduction

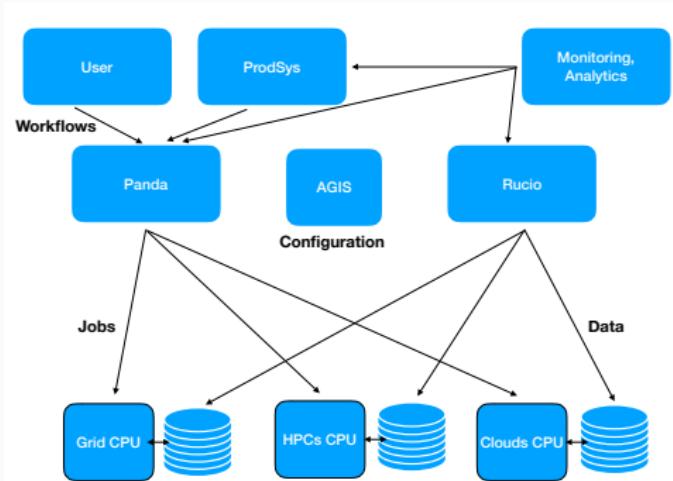
Analysis model study group for Run3 (AMSG-R3)


AMSG-R3 recommendations

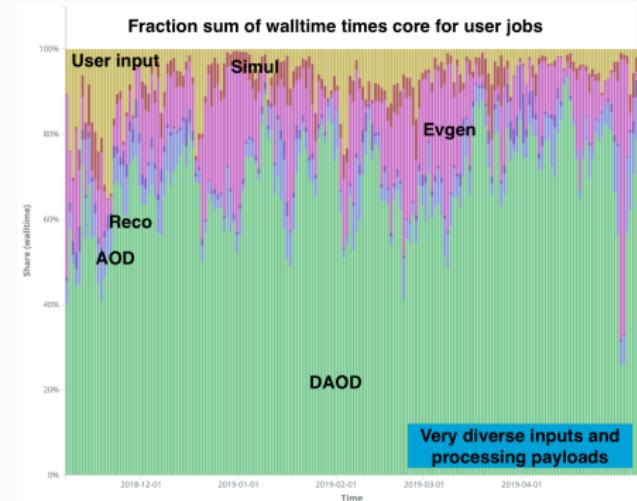
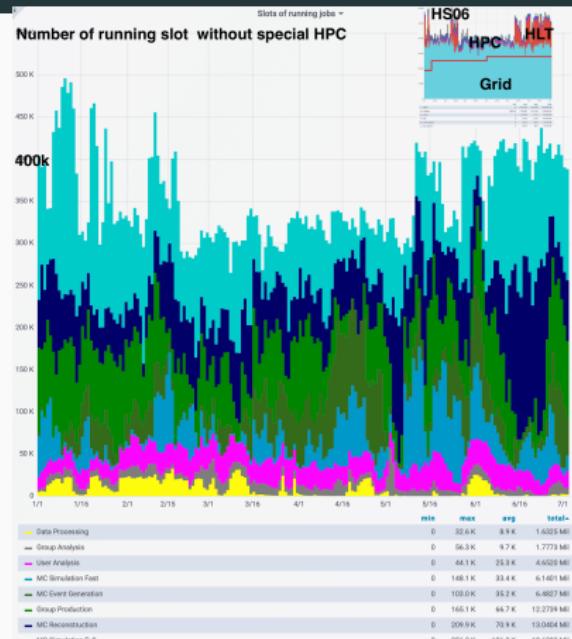
INTRODUCTION: LHC TIMELINES


- Note that \sqrt{s} in Run3 is still uncertain and depends on magnet training in 2021

INTRODUCTION: SIMPLIFIED DATA ANALYSIS WORKFLOW FOR ATLAS

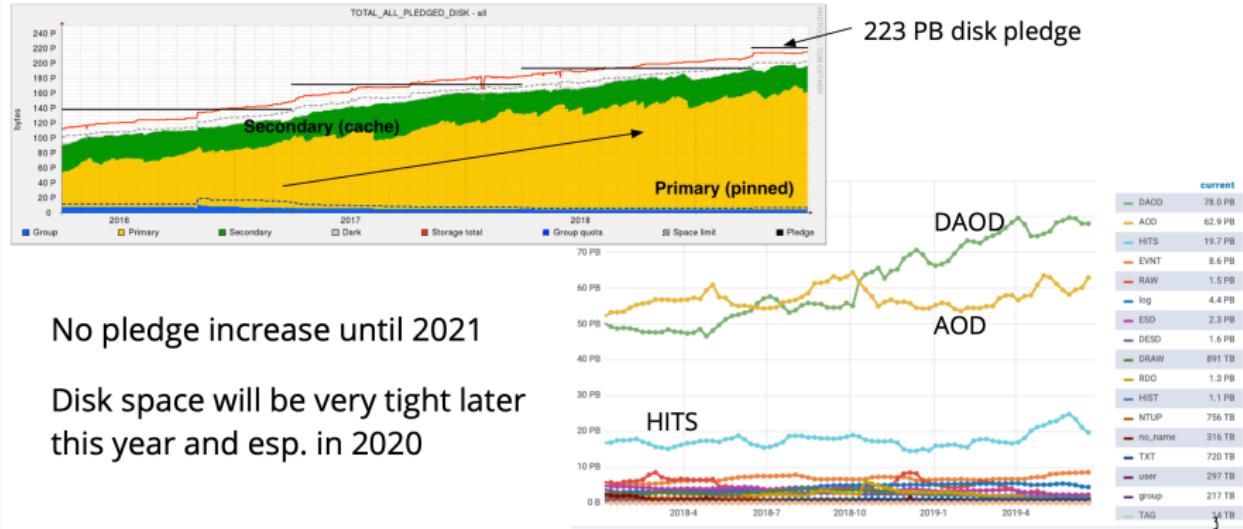

In essence: several steps of data processing and then data reduction
First parts on Grid/Cloud/HPC - last step usually on local resources

ATLAS RUN2 ANALYSIS WORKFLOWS

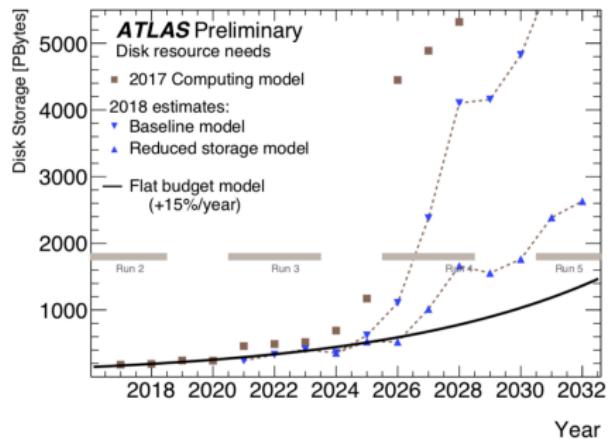



The ATLAS distributed computing system is centered around:

- **Workflow management system:** PanDA
- **Data management system:** Rucio
- **Many additional components:** AGIS, ProdSys, Analytics, ...
- **Resources:** WLCG grid sites, Tier0, HPCs, Boinc, Cloud
- **Shifters:** Grid, Expert and Analysis (ADCoS, CRC, DAST)



CPU RESOURCE USAGE (2019) AND ANALYSIS INPUT (2019)


- 10-20% of analysis share on the Grid/Cloud - not HPC - mainly single core serial processing payloads
- Very diverse inputs and processing payloads in analysis
- In addition lots of final analysis happens on local batch farm or computers on individual ntuples

ATLAS DISK SPACE EVOLUTION

- Mainly Analysis formats on DISK (AOD/DAOD)
- Only 1-2 replicas possible because of large sample sizes
- Many event duplication from AOD to DAOD
- In addition TAPE \approx 253 PB used and pledge of 315 PB

ATLAS DISK SPACE PROJECTIONS

Run3: Initial assumption resources will be: $1.5 \times (\text{resources in 2018})$
Consistent with "flat budget"

OUTLINE

Introduction

Analysis model study group for Run3 (AMSG-R3)

AMSG-R3 recommendations

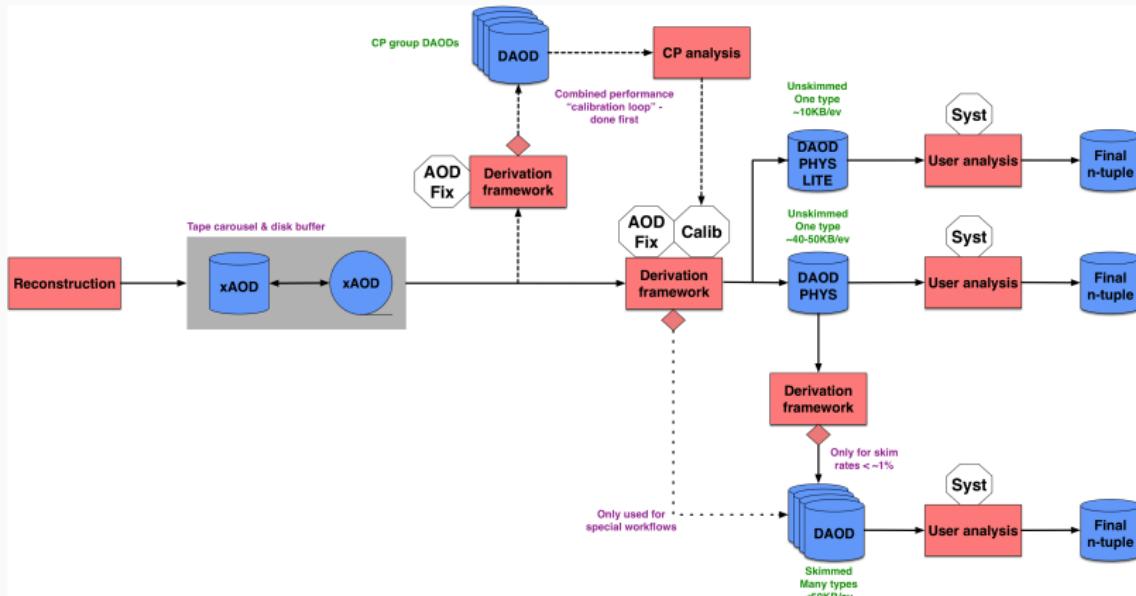
AMSG-R3 GROUP MANDATE AND DOCUMENTATION

- Analysis Model Study Group for Run3 (AMSG-R3) was setup last autumn consisting of ≈ 10 persons in consultation with many domain experts
- Concluded last month with a document and set of recommendations
- Mandate in essence:

Collect options to save at least 30% disk space overall (for the same data/MC sample), harmonise analysis and give directions for further savings for the HL-LHC.

- Presentation at CHEP19 about AMSG-R3 recommendation and current status

OUTLINE



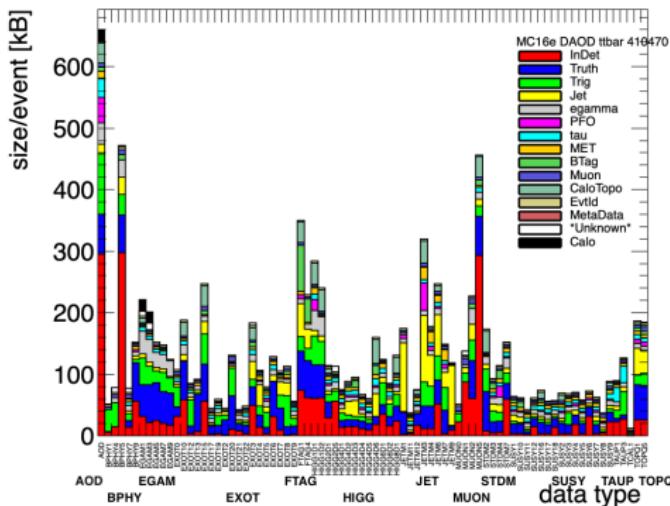
Introduction

Analysis model study group for Run3 (AMSG-R3)

AMSG-R3 recommendations

NEW PRODUCTION WORKFLOWS AND FORMATS

DAOD_PHYS:
50 kB/event, combined single DAOD format (for MC, but also DATA)


DAOD_PHYSLITE:
10 kB/event, very condensed and calibrated objects, very important for HL-LHC

today's DAODs:
Significantly reduce number of today's DAODs

AODs:
Larger fraction only available on TAPE

AOD/DAOD CONTENT REDUCTION

MC16e ttbar 410470, 79 DAODs, 1 AOD, AMI tag
e6337_e5984_s3126_r10724_r10726_p3654

Tracks/InDet

- tracks selection criteria for $\langle \mu \rangle \approx 60$
- track covariance matrix: drop elements in the DAOD, use lossy compression
- split into 2 categories: tracks associated to primary vertex and not - store less detail for PU tracks

Truth

- remove any duplication in MC truth records
- enforce TRUTH3 in physics DAODs

Trigger

- AODRun3_Large (wish 50 kB) and AODRun3_Small (wish 5 kB, for MC)
- Introduce dedicated DAOD_Trigger

Lossy Compression:

use lossy float compression of variables where physics allows this

SUMMARY OF THE AMSG-R3 RECOMMENDATIONS

Formats	<p>Introduce DAOD_PHYS with ~50 kB/event</p> <p>Introduce DAOD_PHYSLITE with ~10 kB/event and calibrated objects</p> <p>Reduce number DAODs formats, use these for CP, systematic and R&D studies</p>
Production	<p>Stop open-ended production for data DAODs</p> <p>Use a tape carousel model for AOD inputs in parts of the DAOD production</p> <p>Consider caps on sizes of individual DAOD type datasets</p> <p>Bring Rucio redirector with global name space into production</p> <p>Smart DAOD replica placement on the grid sites</p> <p>Increase usage of docker/singularity containers for analysis and group ntuple production</p> <p>Central skimming of DAOD_PHYS into physics DAODs will still be offered</p>
AOD/DAOD content	<p>Significantly reduced track, trigger, truth information, use calibrated objects</p> <p>Apply lossy compression for most variables in AOD/DAODs where feasible and applicable</p> <p>Avoid any information duplication in the AOD/DAODs containers</p>

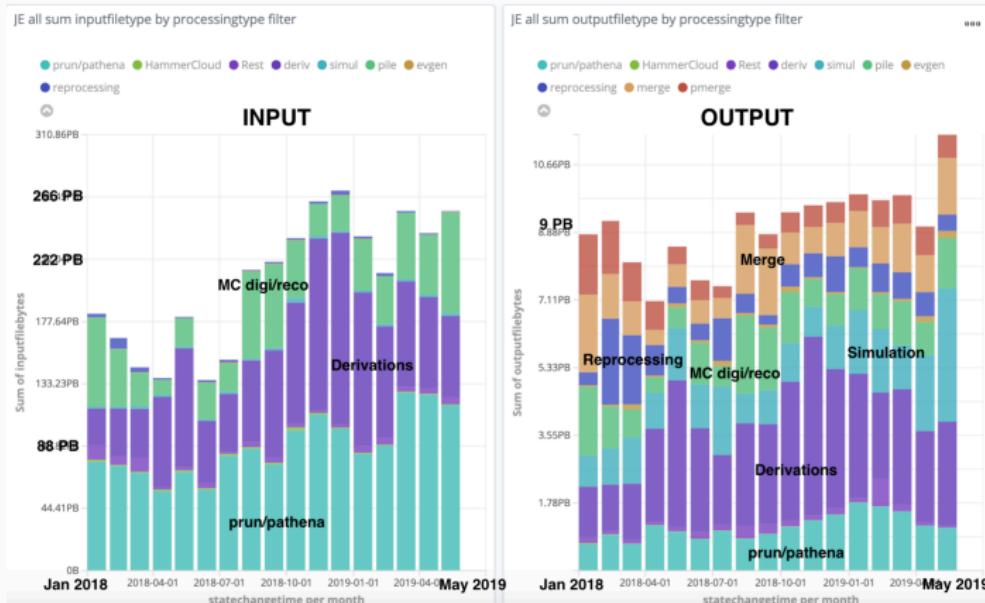
SIMPLE DISK SPACE MODEL WITH RUN2 NUMBERS

- Simple model of Run2 AOD+DAODs: 131.9 PB
- One possible model using Run2 numbers:
 - 4 DAOD_PHYS+DAOD_PHYSLITE (MC+DATA) replicas
 - 0.5 AOD replica (aka TAPE buffer)
 - 50% of today's MC+DATA DAOD

	MC				Data			
	AOD	DAOD	DAOD PHYS	DAOD PHYS LITE	AOD	DAOD	DAOD PHYS	DAOD PHYS LITE
events	$3 \cdot 10^{10}$	$1 \cdot 10^{11}$	$3 \cdot 10^{10}$	$3 \cdot 10^{10}$	$2 \cdot 10^{10}$	$1 \cdot 10^{11}$	$2 \cdot 10^{10}$	$2 \cdot 10^{10}$
size/event [kB]	600	100	70	10	400	50	40	10
disk space [PB]	18.0	10.0	2.1	0.3	8.0	5.0	0.8	0.2
other versions	1.5	2	2	2	1.5	2	2	2
repl. fac.	0.5	1	4	4	0.5	2	4	4
Sum [PB]	13.5	20.0	16.8	2.4	6.0	20.0	6.4	1.6

- Sum: 85.1 PB, Potential saving: 45.9 PB

SUMMARY AND CONCLUSIONS


- AMSG-R3 note with recommendations available and finished
- DAOD_PHYS prototype is available and collecting feedback from different physics groups
- DAOD_PHYSLITE very important for HL-LHC, but urgently have to find new developers
- Lossy compression interesting additional way to shrink format sizes - latest ROOT 6.18.00 offers truncation options for TLeafF16/TLeafD32 (see [link](#))
- Additional work has to be carried out by analysis software, trigger and combined performance groups

BACKUP

"BLIND" LOSSY COMPRESSION WITH $t\bar{t}$ MC FILE

	DAOD_PHYS			DAOD_PHYSLITE			AOD		
	Compr. [kB]	Default [kB]	Ratio	Compr. [kB]	Default [kB]	Ratio	Compr. [kB]	Default [kB]	Ratio
MetaData	0.23	0.23	1.00	0.18	0.18	1.00	1.14	1.16	0.99
BTag	0.97	0.98	0.99	0.08	0.08	1.00	7.74	9.20	0.84
Muon	1.43	1.73	0.83	0.47	0.47	1.00	14.17	17.59	0.81
Truth	1.91	2.80	0.68	2.37	2.52	0.94	43.56	61.04	0.71
PFO	2.35	3.01	0.78				33.69	44.61	0.76
EvtId	1.93	3.07	0.63	1.77	1.76	1.00	1.56	2.10	0.74
tau	4.03	6.11	0.66	2.06	3.76	0.55	25.36	37.85	0.67
MET	7.35	7.42	0.99	3.45	3.44	1.00	12.70	13.16	0.96
egamma	5.31	8.22	0.65	0.15	0.15	1.00	30.16	41.61	0.72
Jet	9.62	12.00	0.80	0.76	0.76	1.00	15.78	20.85	0.76
Trig	42.52	47.15	0.90	33.23	33.20	1.00	132.32	165.25	0.80
InDet	35.70	58.20	0.61	0.60	0.60	1.00	193.43	307.24	0.63
CaloTopo				0.45	0.45	1.00	24.89	35.01	0.71
Calo							18.06	18.07	1.00
Analysis				1.72	2.26	0.76			
jet/e/ μ / τ / γ									
Total	113.32	150.92	0.75	47.27	49.63	0.95	554.94	775.25	0.72
Total-Trig	70.80	103.77	0.68	14.04	16.43	0.85	422.63	609.99	0.69

PROCESSING INPUT AND OUTPUT VOLUMES PANDA IN PAST 17 MONTHS

- Grid **input** processing volume \approx 200-250 PB/month - 30-50% derivation production, 30-50% analysis
- Copied to worker node - files might be accessed multiple times on the worker node (digi-reco)
- Grid **output** volume: \approx 8-9 PB/month of which 2-5 PB/month derivation production
- Tier0 batch is not included here and adds to the input/output volumes